Paper Reading AI Learner

An Eye for an Eye: Defending against Gradient-based Attacks with Gradients

2022-02-02 16:22:28
Hanbin Hong, Yuan Hong, Yu Kong

Abstract

Deep learning models have been shown to be vulnerable to adversarial attacks. In particular, gradient-based attacks have demonstrated high success rates recently. The gradient measures how each image pixel affects the model output, which contains critical information for generating malicious perturbations. In this paper, we show that the gradients can also be exploited as a powerful weapon to defend against adversarial attacks. By using both gradient maps and adversarial images as inputs, we propose a Two-stream Restoration Network (TRN) to restore the adversarial images. To optimally restore the perturbed images with two streams of inputs, a Gradient Map Estimation Mechanism is proposed to estimate the gradients of adversarial images, and a Fusion Block is designed in TRN to explore and fuse the information in two streams. Once trained, our TRN can defend against a wide range of attack methods without significantly degrading the performance of benign inputs. Also, our method is generalizable, scalable, and hard to bypass. Experimental results on CIFAR10, SVHN, and Fashion MNIST demonstrate that our method outperforms state-of-the-art defense methods.

Abstract (translated)

URL

https://arxiv.org/abs/2202.01117

PDF

https://arxiv.org/pdf/2202.01117.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot