Paper Reading AI Learner

The Ecological Footprint of Neural Machine Translation Systems

2022-02-04 14:56:41
Dimitar Sherionov, Eva Vanmassenhove

Abstract

Over the past decade, deep learning (DL) has led to significant advancements in various fields of artificial intelligence, including machine translation (MT). These advancements would not be possible without the ever-growing volumes of data and the hardware that allows large DL models to be trained efficiently. Due to the large amount of computing cores as well as dedicated memory, graphics processing units (GPUs) are a more effective hardware solution for training and inference with DL models than central processing units (CPUs). However, the former is very power demanding. The electrical power consumption has economical as well as ecological implications. This chapter focuses on the ecological footprint of neural MT systems. It starts from the power drain during the training of and the inference with neural MT models and moves towards the environment impact, in terms of carbon dioxide emissions. Different architectures (RNN and Transformer) and different GPUs (consumer-grate NVidia 1080Ti and workstation-grade NVidia P100) are compared. Then, the overall CO2 offload is calculated for Ireland and the Netherlands. The NMT models and their ecological impact are compared to common household appliances to draw a more clear picture. The last part of this chapter analyses quantization, a technique for reducing the size and complexity of models, as a way to reduce power consumption. As quantized models can run on CPUs, they present a power-efficient inference solution without depending on a GPU.

Abstract (translated)

URL

https://arxiv.org/abs/2202.02170

PDF

https://arxiv.org/pdf/2202.02170.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot