Paper Reading AI Learner

Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

2022-02-07 18:04:10
Jinpeng Wang, Bin Chen, Dongliang Liao, Ziyun Zeng, Gongfu Li, Shu-Tao Xia, Jin Xu

Abstract

With the recent boom of video-based social platforms (e.g., YouTube and TikTok), video retrieval using sentence queries has become an important demand and attracts increasing research attention. Despite the decent performance, existing text-video retrieval models in vision and language communities are impractical for large-scale Web search because they adopt brute-force search based on high-dimensional embeddings. To improve efficiency, Web search engines widely apply vector compression libraries (e.g., FAISS) to post-process the learned embeddings. Unfortunately, separate compression from feature encoding degrades the robustness of representations and incurs performance decay. To pursue a better balance between performance and efficiency, we propose the first quantized representation learning method for cross-view video retrieval, namely Hybrid Contrastive Quantization (HCQ). Specifically, HCQ learns both coarse-grained and fine-grained quantizations with transformers, which provide complementary understandings for texts and videos and preserve comprehensive semantic information. By performing Asymmetric-Quantized Contrastive Learning (AQ-CL) across views, HCQ aligns texts and videos at coarse-grained and multiple fine-grained levels. This hybrid-grained learning strategy serves as strong supervision on the cross-view video quantization model, where contrastive learning at different levels can be mutually promoted. Extensive experiments on three Web video benchmark datasets demonstrate that HCQ achieves competitive performance with state-of-the-art non-compressed retrieval methods while showing high efficiency in storage and computation. Code and configurations are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2202.03384

PDF

https://arxiv.org/pdf/2202.03384.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot