Paper Reading AI Learner

Exploring the Loss Landscape in Neural Architecture Search

2021-06-16 17:41:03
Colin White, Sam Nolen, Yash Savani

Abstract

Neural architecture search (NAS) has seen a steep rise in interest over the last few years. Many algorithms for NAS consist of searching through a space of architectures by iteratively choosing an architecture, evaluating its performance by training it, and using all prior evaluations to come up with the next choice. The evaluation step is noisy - the final accuracy varies based on the random initialization of the weights. Prior work has focused on devising new search algorithms to handle this noise, rather than quantifying or understanding the level of noise in architecture evaluations. In this work, we show that (1) the simplest hill-climbing algorithm is a powerful baseline for NAS, and (2), when the noise in popular NAS benchmark datasets is reduced to a minimum, hill-climbing to outperforms many popular state-of-the-art algorithms. We further back up this observation by showing that the number of local minima is substantially reduced as the noise decreases, and by giving a theoretical characterization of the performance of local search in NAS. Based on our findings, for NAS research we suggest (1) using local search as a baseline, and (2) denoising the training pipeline when possible.

Abstract (translated)

URL

https://arxiv.org/abs/2005.02960

PDF

https://arxiv.org/pdf/2005.02960.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot