Paper Reading AI Learner

Should You Mask 15% in Masked Language Modeling?

2022-02-16 11:42:34
Alexander Wettig, Tianyu Gao, Zexuan Zhong, Danqi Chen

Abstract

Masked language models conventionally use a masking rate of 15% due to the belief that more masking would provide insufficient context to learn good representations, and less masking would make training too expensive. Surprisingly, we find that masking up to 40% of input tokens can outperform the 15% baseline, and even masking 80% can preserve most of the performance, as measured by fine-tuning on downstream tasks. Increasing the masking rates has two distinct effects, which we investigate through careful ablations: (1) A larger proportion of input tokens are corrupted, reducing the context size and creating a harder task, and (2) models perform more predictions, which benefits training. We observe that larger models in particular favor higher masking rates, as they have more capacity to perform the harder task. We also connect our findings to sophisticated masking schemes such as span masking and PMI masking, as well as BERT's curious 80-10-10 corruption strategy, and find that simple uniform masking with [MASK] replacements can be competitive at higher masking rates. Our results contribute to a better understanding of masked language modeling and point to new avenues for efficient pre-training.

Abstract (translated)

URL

https://arxiv.org/abs/2202.08005

PDF

https://arxiv.org/pdf/2202.08005.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot