Paper Reading AI Learner

Using Navigational Information to Learn Visual Representations

2022-02-10 20:17:55
Lizhen Zhu, Brad Wyble, James Z. Wang

Abstract

Children learn to build a visual representation of the world from unsupervised exploration and we hypothesize that a key part of this learning ability is the use of self-generated navigational information as a similarity label to drive a learning objective for self-supervised learning. The goal of this work is to exploit navigational information in a visual environment to provide performance in training that exceeds the state-of-the-art self-supervised training. Here, we show that using spatial and temporal information in the pretraining stage of contrastive learning can improve the performance of downstream classification relative to conventional contrastive learning approaches that use instance discrimination to discriminate between two alterations of the same image or two different images. We designed a pipeline to generate egocentric-vision images from a photorealistic ray-tracing environment (ThreeDWorld) and record relevant navigational information for each image. Modifying the Momentum Contrast (MoCo) model, we introduced spatial and temporal information to evaluate the similarity of two views in the pretraining stage instead of instance discrimination. This work reveals the effectiveness and efficiency of contextual information for improving representation learning. The work informs our understanding of the means by which children might learn to see the world without external supervision.

Abstract (translated)

URL

https://arxiv.org/abs/2202.08114

PDF

https://arxiv.org/pdf/2202.08114.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot