Paper Reading AI Learner

Single Image Super-Resolution Using Lightweight CNN with Maxout Units

2018-12-13 02:30:29
Jae-Seok Choi, Munchurl Kim

Abstract

Rectified linear units (ReLU) are well-known to be helpful in obtaining faster convergence and thus higher performance for many deep-learning-based applications. However, networks with ReLU tend to perform poorly when the number of filter parameters is constrained to a small number. To overcome it, in this paper, we propose a novel network utilizing maxout units (MU), and show its effectiveness on super-resolution (SR) applications. In general, the MU has been known to make the filter sizes doubled in generating the feature maps of the same sizes in classification problems. In this paper, we first reveal that the MU can even make the filter sizes halved in restoration problems thus leading to compaction of the network sizes. To show this, our SR network is designed without increasing the filter sizes with MU, which outperforms the state of the art SR methods with a smaller number of filter parameters. To the best of our knowledge, we are the first to incorporate MU into SR applications and show promising performance results. In MU, feature maps from a previous convolutional layer are divided into two parts along channels, which are then compared element-wise and only their max values are passed to a next layer. Along with some interesting properties of MU to be analyzed, we further investigate other variants of MU and their effects. In addition, while ReLU have a trouble for learning in networks with a very small number of convolutional filter parameters, MU do not. For SR applications, our MU-based network reconstructs high-resolution images with comparable quality compared to previous deep-learning-based SR methods, with lower filter parameters.

Abstract (translated)

URL

https://arxiv.org/abs/1711.02321

PDF

https://arxiv.org/pdf/1711.02321.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot