Paper Reading AI Learner

How Well Do Self-Supervised Methods Perform in Cross-Domain Few-Shot Learning?

2022-02-18 04:03:53
Yiyi Zhang, Ying Zheng, Xiaogang Xu, Jun Wang

Abstract

Cross-domain few-shot learning (CDFSL) remains a largely unsolved problem in the area of computer vision, while self-supervised learning presents a promising solution. Both learning methods attempt to alleviate the dependency of deep networks on the requirement of large-scale labeled data. Although self-supervised methods have recently advanced dramatically, their utility on CDFSL is relatively unexplored. In this paper, we investigate the role of self-supervised representation learning in the context of CDFSL via a thorough evaluation of existing methods. It comes as a surprise that even with shallow architectures or small training datasets, self-supervised methods can perform favorably compared to the existing SOTA methods. Nevertheless, no single self-supervised approach dominates all datasets indicating that existing self-supervised methods are not universally applicable. In addition, we find that representations extracted from self-supervised methods exhibit stronger robustness than the supervised method. Intriguingly, whether self-supervised representations perform well on the source domain has little correlation with their applicability on the target domain. As part of our study, we conduct an objective measurement of the performance for six kinds of representative classifiers. The results suggest Prototypical Classifier as the standard evaluation recipe for CDFSL.

Abstract (translated)

URL

https://arxiv.org/abs/2202.09014

PDF

https://arxiv.org/pdf/2202.09014.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot