Paper Reading AI Learner

ProFormer: Learning Data-efficient Representations of Body Movement with Prototype-based Feature Augmentation and Visual Transformers

2022-02-23 11:11:54
Kunyu Peng, Alina Roitberg, Kailun Yang, Jiaming Zhang, Rainer Stiefelhagen

Abstract

Automatically understanding human behaviour allows household robots to identify the most critical needs and plan how to assist the human according to the current situation. However, the majority of such methods are developed under the assumption that a large amount of labelled training examples is available for all concepts-of-interest. Robots, on the other hand, operate in constantly changing unstructured environments, and need to adapt to novel action categories from very few samples. Methods for data-efficient recognition from body poses increasingly leverage skeleton sequences structured as image-like arrays and then used as input to convolutional neural networks. We look at this paradigm from the perspective of transformer networks, for the first time exploring visual transformers as data-efficient encoders of skeleton movement. In our pipeline, body pose sequences cast as image-like representations are converted into patch embeddings and then passed to a visual transformer backbone optimized with deep metric learning. Inspired by recent success of feature enhancement methods in semi-supervised learning, we further introduce ProFormer -- an improved training strategy which uses soft-attention applied on iteratively estimated action category prototypes used to augment the embeddings and compute an auxiliary consistency loss. Extensive experiments consistently demonstrate the effectiveness of our approach for one-shot recognition from body poses, achieving state-of-the-art results on multiple datasets and surpassing the best published approach on the challenging NTU-120 one-shot benchmark by 1.84%. Our code will be made publicly available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2202.11423

PDF

https://arxiv.org/pdf/2202.11423.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot