Paper Reading AI Learner

Exploiting Correlation to Achieve Faster Learning Rates in Low-Rank Preference Bandits

2022-02-23 21:34:20
Suprovat Ghoshal, Aadirupa Saha

Abstract

We introduce the \emph{Correlated Preference Bandits} problem with random utility-based choice models (RUMs), where the goal is to identify the best item from a given pool of $n$ items through online subsetwise preference feedback. We investigate whether models with a simple correlation structure, e.g. low rank, can result in faster learning rates. While we show that the problem can be impossible to solve for the general `low rank' choice models, faster learning rates can be attained assuming more structured item correlations. In particular, we introduce a new class of \emph{Block-Rank} based RUM model, where the best item is shown to be $(\epsilon,\delta)$-PAC learnable with only $O(r \epsilon^{-2} \log(n/\delta))$ samples. This improves on the standard sample complexity bound of $\tilde{O}(n\epsilon^{-2} \log(1/\delta))$ known for the usual learning algorithms which might not exploit the item-correlations ($r \ll n$). We complement the above sample complexity with a matching lower bound (up to logarithmic factors), justifying the tightness of our analysis. Surprisingly, we also show a lower bound of $\Omega(n\epsilon^{-2}\log(1/\delta))$ when the learner is forced to play just duels instead of larger subsetwise queries. Further, we extend the results to a more general `\emph{noisy Block-Rank}' model, which ensures robustness of our techniques. Overall, our results justify the advantage of playing subsetwise queries over pairwise preferences $(k=2)$, we show the latter provably fails to exploit correlation.

Abstract (translated)

URL

https://arxiv.org/abs/2202.11795

PDF

https://arxiv.org/pdf/2202.11795.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot