Paper Reading AI Learner

Joint Answering and Explanation for Visual Commonsense Reasoning

2022-02-25 11:26:52
Zhenyang Li, Yangyang Guo, Kejie Wang, Yinwei Wei, Liqiang Nie, Mohan Kankanhalli

Abstract

Visual Commonsense Reasoning (VCR), deemed as one challenging extension of the Visual Question Answering (VQA), endeavors to pursue a more high-level visual comprehension. It is composed of two indispensable processes: question answering over a given image and rationale inference for answer explanation. Over the years, a variety of methods tackling VCR have advanced the performance on the benchmark dataset. Despite significant as these methods are, they often treat the two processes in a separate manner and hence decompose the VCR into two irrelevant VQA instances. As a result, the pivotal connection between question answering and rationale inference is interrupted, rendering existing efforts less faithful on visual reasoning. To empirically study this issue, we perform some in-depth explorations in terms of both language shortcuts and generalization capability to verify the pitfalls of this treatment. Based on our findings, in this paper, we present a plug-and-play knowledge distillation enhanced framework to couple the question answering and rationale inference processes. The key contribution is the introduction of a novel branch, which serves as the bridge to conduct processes connecting. Given that our framework is model-agnostic, we apply it to the existing popular baselines and validate its effectiveness on the benchmark dataset. As detailed in the experimental results, when equipped with our framework, these baselines achieve consistent and significant performance improvements, demonstrating the viability of processes coupling, as well as the superiority of the proposed framework.

Abstract (translated)

URL

https://arxiv.org/abs/2202.12626

PDF

https://arxiv.org/pdf/2202.12626.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot