Paper Reading AI Learner

On-chip QNN: Towards Efficient On-Chip Training of Quantum Neural Networks

2022-02-26 22:27:36
Hanrui Wang, Zirui Li, Jiaqi Gu, Yongshan Ding, David Z. Pan, Song Han

Abstract

Quantum Neural Network (QNN) is drawing increasing research interest thanks to its potential to achieve quantum advantage on near-term Noisy Intermediate Scale Quantum (NISQ) hardware. In order to achieve scalable QNN learning, the training process needs to be offloaded to real quantum machines instead of using exponential-cost classical simulators. One common approach to obtain QNN gradients is parameter shift whose cost scales linearly with the number of qubits. We present On-chip QNN, the first experimental demonstration of practical on-chip QNN training with parameter shift. Nevertheless, we find that due to the significant quantum errors (noises) on real machines, gradients obtained from naive parameter shift have low fidelity and thus degrade the training accuracy. To this end, we further propose probabilistic gradient pruning to firstly identify gradients with potentially large errors and then remove them. Specifically, small gradients have larger relative errors than large ones, thus having a higher probability to be pruned. We perform extensive experiments on 5 classification tasks with 5 real quantum machines. The results demonstrate that our on-chip training achieves over 90% and 60% accuracy for 2-class and 4-class image classification tasks. The probabilistic gradient pruning brings up to 7% QNN accuracy improvements over no pruning. Overall, we successfully obtain similar on-chip training accuracy compared with noise-free simulation but have much better training scalability. The code for parameter shift on-chip training is available in the TorchQuantum library.

Abstract (translated)

URL

https://arxiv.org/abs/2202.13239

PDF

https://arxiv.org/pdf/2202.13239.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot