Paper Reading AI Learner

Cyber Mobility Mirror: Deep Learning-based Real-time 3D Object Perception and Reconstruction Using Roadside LiDAR

2022-02-28 01:58:24
Zhengwei Bai, Saswat Priyadarshi Nayak, Xuanpeng Zhao, Guoyuan Wu, Matthew J. Barth, Xuewei Qi, Yongkang Liu, Kentaro Oguchi

Abstract

Enabling Cooperative Driving Automation (CDA) requires high-fidelity and real-time perception information, which is available from onboard sensors or vehicle-to-everything (V2X) communications. Nevertheless, the accessibility of this information may suffer from the range and occlusion of perception or limited penetration rates in connectivity. In this paper, we introduce the prototype of Cyber Mobility Mirror (CMM), a next-generation real-time traffic surveillance system for 3D object detection, classification, tracking, and reconstruction, to provide CAVs with wide-range high-fidelity perception information in a mixed traffic environment. The CMM system consists of six main components: 1) the data pre-processor to retrieve and pre-process raw data from the roadside LiDAR; 2) the 3D object detector to generate 3D bounding boxes based on point cloud data; 3) the multi-objects tracker to endow unique IDs to detected objects and estimate their dynamic states; 4) the global locator to map positioning information from the LiDAR coordinate to geographic coordinate using coordinate transformation; 5) the cloud-based communicator to transmit perception information from roadside sensors to equipped vehicles; and 6) the onboard advisor to reconstruct and display the real-time traffic conditions via Graphical User Interface (GUI). In this study, a field-operational prototype system is deployed at a real-world intersection, University Avenue and Iowa Avenue in Riverside, California to assess the feasibility and performance of our CMM system. Results from field tests demonstrate that our CMM prototype system can provide satisfactory perception performance with 96.99% precision and 83.62% recall. High-fidelity real-time traffic conditions (at the object level) can be displayed on the GUI of the equipped vehicle with a frequency of 3-4 Hz.

Abstract (translated)

URL

https://arxiv.org/abs/2202.13505

PDF

https://arxiv.org/pdf/2202.13505.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot