Paper Reading AI Learner

The dangers in algorithms learning humans' values and irrationalities

2022-02-28 17:41:39
Rebecca Gormann, Stuart Armstrong

Abstract

For an artificial intelligence (AI) to be aligned with human values (or human preferences), it must first learn those values. AI systems that are trained on human behavior, risk miscategorising human irrationalities as human values -- and then optimising for these irrationalities. Simply learning human values still carries risks: AI learning them will inevitably also gain information on human irrationalities and human behaviour/policy. Both of these can be dangerous: knowing human policy allows an AI to become generically more powerful (whether it is partially aligned or not aligned at all), while learning human irrationalities allows it to exploit humans without needing to provide value in return. This paper analyses the danger in developing artificial intelligence that learns about human irrationalities and human policy, and constructs a model recommendation system with various levels of information about human biases, human policy, and human values. It concludes that, whatever the power and knowledge of the AI, it is more dangerous for it to know human irrationalities than human values. Thus it is better for the AI to learn human values directly, rather than learning human biases and then deducing values from behaviour.

Abstract (translated)

URL

https://arxiv.org/abs/2202.13985

PDF

https://arxiv.org/pdf/2202.13985.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot