Paper Reading AI Learner

Don't Be So Dense: Sparse-to-Sparse GAN Training Without Sacrificing Performance

2022-03-05 15:18:03
Shiwei Liu, Yuesong Tian, Tianlong Chen, Li Shen

Abstract

Generative adversarial networks (GANs) have received an upsurging interest since being proposed due to the high quality of the generated data. While achieving increasingly impressive results, the resource demands associated with the large model size hinders the usage of GANs in resource-limited scenarios. For inference, the existing model compression techniques can reduce the model complexity with comparable performance. However, the training efficiency of GANs has less been explored due to the fragile training process of GANs. In this paper, we, for the first time, explore the possibility of directly training sparse GAN from scratch without involving any dense or pre-training steps. Even more unconventionally, our proposed method enables directly training sparse unbalanced GANs with an extremely sparse generator from scratch. Instead of training full GANs, we start with sparse GANs and dynamically explore the parameter space spanned over the generator throughout training. Such a sparse-to-sparse training procedure enhances the capacity of the highly sparse generator progressively while sticking to a fixed small parameter budget with appealing training and inference efficiency gains. Extensive experiments with modern GAN architectures validate the effectiveness of our method. Our sparsified GANs, trained from scratch in one single run, are able to outperform the ones learned by expensive iterative pruning and re-training. Perhaps most importantly, we find instead of inheriting parameters from expensive pre-trained GANs, directly training sparse GANs from scratch can be a much more efficient solution. For example, only training with a 80% sparse generator and a 70% sparse discriminator, our method can achieve even better performance than the dense BigGAN.

Abstract (translated)

URL

https://arxiv.org/abs/2203.02770

PDF

https://arxiv.org/pdf/2203.02770.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot