Paper Reading AI Learner

Multi-Modal Attribute Extraction for E-Commerce

2022-03-07 14:48:44
Aloïs De la Comble, Anuvabh Dutt, Pablo Montalvo, Aghiles Salah

Abstract

To improve users' experience as they navigate the myriad of options offered by online marketplaces, it is essential to have well-organized product catalogs. One key ingredient to that is the availability of product attributes such as color or material. However, on some marketplaces such as Rakuten-Ichiba, which we focus on, attribute information is often incomplete or even missing. One promising solution to this problem is to rely on deep models pre-trained on large corpora to predict attributes from unstructured data, such as product descriptive texts and images (referred to as modalities in this paper). However, we find that achieving satisfactory performance with this approach is not straightforward but rather the result of several refinements, which we discuss in this paper. We provide a detailed description of our approach to attribute extraction, from investigating strong single-modality methods, to building a solid multimodal model combining textual and visual information. One key component of our multimodal architecture is a novel approach to seamlessly combine modalities, which is inspired by our single-modality investigations. In practice, we notice that this new modality-merging method may suffer from a modality collapse issue, i.e., it neglects one modality. Hence, we further propose a mitigation to this problem based on a principled regularization scheme. Experiments on Rakuten-Ichiba data provide empirical evidence for the benefits of our approach, which has been also successfully deployed to Rakuten-Ichiba. We also report results on publicly available datasets showing that our model is competitive compared to several recent multimodal and unimodal baselines.

Abstract (translated)

URL

https://arxiv.org/abs/2203.03441

PDF

https://arxiv.org/pdf/2203.03441.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot