Paper Reading AI Learner

Algorithmic audits of algorithms, and the law

2022-02-15 14:20:53
Erwan Le Merrer, Ronan Pons, Gilles Trédan

Abstract

Algorithmic decision making is now widespread, ranging from health care allocation to more common actions such as recommendation or information ranking. The aim to audit these algorithms has grown alongside. In this paper, we focus on external audits that are conducted by interacting with the user side of the target algorithm, hence considered as a black box. Yet, the legal framework in which these audits take place is mostly ambiguous to researchers developing them: on the one hand, the legal value of the audit outcome is uncertain; on the other hand the auditors' rights and obligations are unclear. The contribution of this paper is to articulate two canonical audit forms to law, to shed light on these aspects: 1) the first audit form (we coin the Bobby audit form) checks a predicate against the algorithm, while the second (Sherlock) is more loose and opens up to multiple investigations. We find that: Bobby audits are more amenable to prosecution, yet are delicate as operating on real user data. This can lead to reject by a court (notion of admissibility). Sherlock audits craft data for their operation, most notably to build surrogates of the audited algorithm. It is mostly used for acts for whistleblowing, as even if accepted as a proof, the evidential value will be low in practice. 2) these two forms require the prior respect of a proper right to audit, granted by law or by the platform being audited; otherwise the auditor will be also prone to prosecutions regardless of the audit outcome. This article thus highlights the relation of current audits with law, in order to structure the growing field of algorithm auditing.

Abstract (translated)

URL

https://arxiv.org/abs/2203.03711

PDF

https://arxiv.org/pdf/2203.03711.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot