Paper Reading AI Learner

InsightNet: non-contact blood pressure measuring network based on face video

2022-03-07 07:06:42
Jialiang Zhuang, Bin Li, Yun Zhang, Xiujuan Zheng

Abstract

Blood pressure indicates cardiac function and peripheral vascular resistance and is critical for disease diagnosis. Traditionally, blood pressure data are mainly acquired through contact sensors, which require high maintenance and may be inconvenient and unfriendly to some people (e.g., burn patients). In this paper, an efficient non-contact blood pressure measurement network based on face videos is proposed for the first time. An innovative oversampling training strategy is proposed to handle the unbalanced data distribution. The input video sequences are first normalized and converted to our proposed YUVT color space. Then, the Spatio-temporal slicer encodes it into a multi-domain Spatio-temporal mapping. Finally, the neural network computation module, used for high-dimensional feature extraction of the multi-domain spatial feature mapping, after which the extracted high-dimensional features are used to enhance the time-domain feature association using LSTM, is computed by the blood pressure classifier to obtain the blood pressure measurement intervals. Combining the output of feature extraction and the result after classification, the blood pressure calculator, calculates the blood pressure measurement values. The solution uses a blood pressure classifier to calculate blood pressure intervals, which can help the neural network distinguish between the high-dimensional features of different blood pressure intervals and alleviate the overfitting phenomenon. It can also locate the blood pressure intervals, correct the final blood pressure values and improve the network performance. Experimental results on two datasets show that the network outperforms existing state-of-the-art methods.

Abstract (translated)

URL

https://arxiv.org/abs/2203.03634

PDF

https://arxiv.org/pdf/2203.03634.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot