Paper Reading AI Learner

Active Evaluation: Efficient NLG Evaluation with Few Pairwise Comparisons

2022-03-11 16:39:15
Akash Kumar Mohankumar, Mitesh M. Khapra

Abstract

Recent studies have shown the advantages of evaluating NLG systems using pairwise comparisons as opposed to direct assessment. Given $k$ systems, a naive approach for identifying the top-ranked system would be to uniformly obtain pairwise comparisons from all ${k \choose 2}$ pairs of systems. However, this can be very expensive as the number of human annotations required would grow quadratically with $k$. In this work, we introduce Active Evaluation, a framework to efficiently identify the top-ranked system by actively choosing system pairs for comparison using dueling bandit algorithms. We perform extensive experiments with 13 dueling bandits algorithms on 13 NLG evaluation datasets spanning 5 tasks and show that the number of human annotations can be reduced by 80%. To further reduce the number of human annotations, we propose model-based dueling bandit algorithms which combine automatic evaluation metrics with human evaluations. Specifically, we eliminate sub-optimal systems even before the human annotation process and perform human evaluations only on test examples where the automatic metric is highly uncertain. This reduces the number of human annotations required further by 89%. In effect, we show that identifying the top-ranked system requires only a few hundred human annotations, which grow linearly with $k$. Lastly, we provide practical recommendations and best practices to identify the top-ranked system efficiently. Our code has been made publicly available at this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2203.06063

PDF

https://arxiv.org/pdf/2203.06063.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot