Paper Reading AI Learner

Generalized but not Robust? Comparing the Effects of Data Modification Methods on Out-of-Domain Generalization and Adversarial Robustness

2022-03-15 05:32:44
Tejas Gokhale, Swaroop Mishra, Man Luo, Bhavdeep Singh Sachdeva, Chitta Baral

Abstract

Data modification, either via additional training datasets, data augmentation, debiasing, and dataset filtering, has been proposed as an effective solution for generalizing to out-of-domain (OOD) inputs, in both natural language processing and computer vision literature. However, the effect of data modification on adversarial robustness remains unclear. In this work, we conduct a comprehensive study of common data modification strategies and evaluate not only their in-domain and OOD performance, but also their adversarial robustness (AR). We also present results on a two-dimensional synthetic dataset to visualize the effect of each method on the training distribution. This work serves as an empirical study towards understanding the relationship between generalizing to unseen domains and defending against adversarial perturbations. Our findings suggest that more data (either via additional datasets or data augmentation) benefits both OOD accuracy and AR. However, data filtering (previously shown to improve OOD accuracy on natural language inference) hurts OOD accuracy on other tasks such as question answering and image classification. We provide insights from our experiments to inform future work in this direction.

Abstract (translated)

URL

https://arxiv.org/abs/2203.07653

PDF

https://arxiv.org/pdf/2203.07653.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot