Paper Reading AI Learner

Contrastive Visual Semantic Pretraining Magnifies the Semantics of Natural Language Representations

2022-03-14 21:42:13
Robert Wolfe, Aylin Caliskan

Abstract

We examine the effects of contrastive visual semantic pretraining by comparing the geometry and semantic properties of contextualized English language representations formed by GPT-2 and CLIP, a zero-shot multimodal image classifier which adapts the GPT-2 architecture to encode image captions. We find that contrastive visual semantic pretraining significantly mitigates the anisotropy found in contextualized word embeddings from GPT-2, such that the intra-layer self-similarity (mean pairwise cosine similarity) of CLIP word embeddings is under .25 in all layers, compared to greater than .95 in the top layer of GPT-2. CLIP word embeddings outperform GPT-2 on word-level semantic intrinsic evaluation tasks, and achieve a new corpus-based state of the art for the RG65 evaluation, at .88. CLIP also forms fine-grained semantic representations of sentences, and obtains Spearman's rho = .73 on the SemEval-2017 Semantic Textual Similarity Benchmark with no fine-tuning, compared to no greater than rho = .45 in any layer of GPT-2. Finally, intra-layer self-similarity of CLIP sentence embeddings decreases as the layer index increases, finishing at .25 in the top layer, while the self-similarity of GPT-2 sentence embeddings formed using the EOS token increases layer-over-layer and never falls below .97. Our results indicate that high anisotropy is not an inevitable consequence of contextualization, and that visual semantic pretraining is beneficial not only for ordering visual representations, but also for encoding useful semantic representations of language, both on the word level and the sentence level.

Abstract (translated)

URL

https://arxiv.org/abs/2203.07511

PDF

https://arxiv.org/pdf/2203.07511.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot