Paper Reading AI Learner

Recursive 3D Segmentation of Shoulder Joint with Coarse-scanned MR Image

2022-03-13 00:24:11
Xiaoxiao He, Chaowei Tan, Virak Tan, Kang Li

Abstract

For diagnosis of shoulder illness, it is essential to look at the morphology deviation of scapula and humerus from the medical images that are acquired from Magnetic Resonance (MR) imaging. However, taking high-resolution MR images is time-consuming and costly because the reduction of the physical distance between image slices causes prolonged scanning time. Moreover, due to the lack of training images, images from various sources must be utilized, which creates the issue of high variance across the dataset. Also, there are human errors among the images due to the fact that it is hard to take the spatial relationship into consideration when labeling the 3D image in low resolution. In order to combat all obstacles stated above, we develop a fully automated algorithm for segmenting the humerus and scapula bone from coarsely scanned and low-resolution MR images and a recursive learning framework that iterative utilize the generated labels for reducing the errors among segmentations and increase our dataset set for training the next round network. In this study, 50 MR images are collected from several institutions and divided into five mutually exclusive sets for carrying five-fold cross-validation. Contours that are generated by the proposed method demonstrated a high level of accuracy when compared with ground truth and the traditional method. The proposed neural network and the recursive learning scheme improve the overall quality of the segmentation on humerus and scapula on the low-resolution dataset and reduced incorrect segmentation in the ground truth, which could have a positive impact on finding the cause of shoulder pain and patient's early relief.

Abstract (translated)

URL

https://arxiv.org/abs/2203.07846

PDF

https://arxiv.org/pdf/2203.07846.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot