Paper Reading AI Learner

Whither the Priors for Interactivity?

2022-03-16 12:06:46
Roger K. Moore

Abstract

Voice-based communication is often cited as one of the most `natural' ways in which humans and robots might interact, and the recent availability of accurate automatic speech recognition and intelligible speech synthesis has enabled researchers to integrate advanced off-the-shelf spoken language technology components into their robot platforms. Despite this, the resulting interactions are anything but `natural'. It transpires that simply giving a robot a voice doesn't mean that a user will know how (or when) to talk to it, and the resulting `conversations' tend to be stilted, one-sided and short. On the surface, these difficulties might appear to be fairly trivial consequences of users' unfamiliarity with robots (and \emph{vice versa}), and that any problems would be mitigated by long-term use by the human, coupled with `deep learning' by the robot. However, it is argued here that such communication failures are indicative of a deeper malaise: a fundamental lack of basic principles -- \emph{priors} -- underpinning not only speech-based interaction in particular, but (vocal) interactivity in general. This is evidenced not only by the fact that contemporary spoken language systems already require training data sets that are orders-of-magnitude greater than that experienced by a young child, but also by the lack of design principles for creating effective communicative human-robot interaction. This short position paper identifies some of the key areas where theoretical insights might help overcome these shortfalls.

Abstract (translated)

URL

https://arxiv.org/abs/2203.08578

PDF

https://arxiv.org/pdf/2203.08578.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot