Paper Reading AI Learner

CapsNet for Medical Image Segmentation

2022-03-16 21:15:07
Minh Tran, Viet-Khoa Vo-Ho, Kyle Quinn, Hien Nguyen, Khoa Luu, Ngan Le

Abstract

Convolutional Neural Networks (CNNs) have been successful in solving tasks in computer vision including medical image segmentation due to their ability to automatically extract features from unstructured data. However, CNNs are sensitive to rotation and affine transformation and their success relies on huge-scale labeled datasets capturing various input variations. This network paradigm has posed challenges at scale because acquiring annotated data for medical segmentation is expensive, and strict privacy regulations. Furthermore, visual representation learning with CNNs has its own flaws, e.g., it is arguable that the pooling layer in traditional CNNs tends to discard positional information and CNNs tend to fail on input images that differ in orientations and sizes. Capsule network (CapsNet) is a recent new architecture that has achieved better robustness in representation learning by replacing pooling layers with dynamic routing and convolutional strides, which has shown potential results on popular tasks such as classification, recognition, segmentation, and natural language processing. Different from CNNs, which result in scalar outputs, CapsNet returns vector outputs, which aim to preserve the part-whole relationships. In this work, we first introduce the limitations of CNNs and fundamentals of CapsNet. We then provide recent developments of CapsNet for the task of medical image segmentation. We finally discuss various effective network architectures to implement a CapsNet for both 2D images and 3D volumetric medical image segmentation.

Abstract (translated)

URL

https://arxiv.org/abs/2203.08948

PDF

https://arxiv.org/pdf/2203.08948.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot