Paper Reading AI Learner

Upsampling Autoencoder for Self-Supervised Point Cloud Learning

2022-03-21 07:20:37
Cheng Zhang, Jian Shi, Xuan Deng, Zizhao Wu

Abstract

In computer-aided design (CAD) community, the point cloud data is pervasively applied in reverse engineering, where the point cloud analysis plays an important role. While a large number of supervised learning methods have been proposed to handle the unordered point clouds and demonstrated their remarkable success, their performance and applicability are limited to the costly data annotation. In this work, we propose a novel self-supervised pretraining model for point cloud learning without human annotations, which relies solely on upsampling operation to perform feature learning of point cloud in an effective manner. The key premise of our approach is that upsampling operation encourages the network to capture both high-level semantic information and low-level geometric information of the point cloud, thus the downstream tasks such as classification and segmentation will benefit from the pre-trained model. Specifically, our method first conducts the random subsampling from the input point cloud at a low proportion e.g., 12.5%. Then, we feed them into an encoder-decoder architecture, where an encoder is devised to operate only on the subsampled points, along with a upsampling decoder is adopted to reconstruct the original point cloud based on the learned features. Finally, we design a novel joint loss function which enforces the upsampled points to be similar with the original point cloud and uniformly distributed on the underlying shape surface. By adopting the pre-trained encoder weights as initialisation of models for downstream tasks, we find that our UAE outperforms previous state-of-the-art methods in shape classification, part segmentation and point cloud upsampling tasks. Code will be made publicly available upon acceptance.

Abstract (translated)

URL

https://arxiv.org/abs/2203.10768

PDF

https://arxiv.org/pdf/2203.10768.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot