Paper Reading AI Learner

LocATe: End-to-end Localization of Actions in 3D with Transformers

2022-03-21 03:35:32
Jiankai Sun, Bolei Zhou, Michael J. Black, Arjun Chandrasekaran

Abstract

Understanding a person's behavior from their 3D motion is a fundamental problem in computer vision with many applications. An important component of this problem is 3D Temporal Action Localization (3D-TAL), which involves recognizing what actions a person is performing, and when. State-of-the-art 3D-TAL methods employ a two-stage approach in which the action span detection task and the action recognition task are implemented as a cascade. This approach, however, limits the possibility of error-correction. In contrast, we propose LocATe, an end-to-end approach that jointly localizes and recognizes actions in a 3D sequence. Further, unlike existing autoregressive models that focus on modeling the local context in a sequence, LocATe's transformer model is capable of capturing long-term correlations between actions in a sequence. Unlike transformer-based object-detection and classification models which consider image or patch features as input, the input in 3D-TAL is a long sequence of highly correlated frames. To handle the high-dimensional input, we implement an effective input representation, and overcome the diffuse attention across long time horizons by introducing sparse attention in the model. LocATe outperforms previous approaches on the existing PKU-MMD 3D-TAL benchmark (mAP=93.2%). Finally, we argue that benchmark datasets are most useful where there is clear room for performance improvement. To that end, we introduce a new, challenging, and more realistic benchmark dataset, BABEL-TAL-20 (BT20), where the performance of state-of-the-art methods is significantly worse. The dataset and code for the method will be available for research purposes.

Abstract (translated)

URL

https://arxiv.org/abs/2203.10719

PDF

https://arxiv.org/pdf/2203.10719.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot