Paper Reading AI Learner

ProgressiveMotionSeg: Mutually Reinforced Framework for Event-Based Motion Segmentation

2022-03-22 13:40:26
Jinze Chen, Yang Wang, Yang Cao, Feng Wu, Zheng-Jun Zha

Abstract

Dynamic Vision Sensor (DVS) can asynchronously output the events reflecting apparent motion of objects with microsecond resolution, and shows great application potential in monitoring and other fields. However, the output event stream of existing DVS inevitably contains background activity noise (BA noise) due to dark current and junction leakage current, which will affect the temporal correlation of objects, resulting in deteriorated motion estimation performance. Particularly, the existing filter-based denoising methods cannot be directly applied to suppress the noise in event stream, since there is no spatial correlation. To address this issue, this paper presents a novel progressive framework, in which a Motion Estimation (ME) module and an Event Denoising (ED) module are jointly optimized in a mutually reinforced manner. Specifically, based on the maximum sharpness criterion, ME module divides the input event into several segments by adaptive clustering in a motion compensating warp field, and captures the temporal correlation of event stream according to the clustered motion parameters. Taking temporal correlation as guidance, ED module calculates the confidence that each event belongs to real activity events, and transmits it to ME module to update energy function of motion segmentation for noise suppression. The two steps are iteratively updated until stable motion segmentation results are obtained. Extensive experimental results on both synthetic and real datasets demonstrate the superiority of our proposed approaches against the State-Of-The-Art (SOTA) methods.

Abstract (translated)

URL

https://arxiv.org/abs/2203.11732

PDF

https://arxiv.org/pdf/2203.11732.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot