Paper Reading AI Learner

Learning Relation-Specific Representations for Few-shot Knowledge Graph Completion

2022-03-22 11:45:48
Yuling Li, Kui Yu, Yuhong Zhang, Xindong Wu

Abstract

Recent years have witnessed increasing interest in few-shot knowledge graph completion (FKGC), which aims to infer unseen query triples for a few-shot relation using a handful of reference triples of the relation. The primary focus of existing FKGC methods lies in learning the relation representations that can reflect the common information shared by the query and reference triples. To this end, these methods learn the embeddings of entities with their direct neighbors, and use the concatenation of the entity embeddings as the relation representations. However, the entity embeddings learned only from direct neighborhoods may have low expressiveness when the entity has sparse neighbors or shares a common local neighborhood with other entities. Moreover, the embeddings of two entities are insufficient to represent the semantic information of their relationship, especially when they have multiple relations. To address these issues, we propose a Relation-Specific Context Learning (RSCL) framework, which exploits graph contexts of triples to capture the semantic information of relations and entities simultaneously. Specifically, we first extract graph contexts for each triple, which can provide long-term entity-relation dependencies. To model the graph contexts, we then develop a hierarchical relation-specific learner to learn global and local relation-specific representations for relations by capturing contextualized information of triples and incorporating local information of entities. Finally, we utilize the learned representations to predict the likelihood of the query triples. Experimental results on two public datasets demonstrate that RSCL outperforms state-of-the-art FKGC methods.

Abstract (translated)

URL

https://arxiv.org/abs/2203.11639

PDF

https://arxiv.org/pdf/2203.11639.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot