Paper Reading AI Learner

Music Generation Using an LSTM

2022-03-23 00:13:41
Michael Conner, Lucas Gral, Kevin Adams, David Hunger, Reagan Strelow, Alexander Neuwirth

Abstract

Over the past several years, deep learning for sequence modeling has grown in popularity. To achieve this goal, LSTM network structures have proven to be very useful for making predictions for the next output in a series. For instance, a smartphone predicting the next word of a text message could use an LSTM. We sought to demonstrate an approach of music generation using Recurrent Neural Networks (RNN). More specifically, a Long Short-Term Memory (LSTM) neural network. Generating music is a notoriously complicated task, whether handmade or generated, as there are a myriad of components involved. Taking this into account, we provide a brief synopsis of the intuition, theory, and application of LSTMs in music generation, develop and present the network we found to best achieve this goal, identify and address issues and challenges faced, and include potential future improvements for our network.

Abstract (translated)

URL

https://arxiv.org/abs/2203.12105

PDF

https://arxiv.org/pdf/2203.12105.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot