Paper Reading AI Learner

Mining Latent Relationships among Clients: Peer-to-peer Federated Learning with Adaptive Neighbor Matching

2022-03-23 09:10:14
Zexi Li, Jiaxun Lu, Shuang Luo, Didi Zhu, Yunfeng Shao, Yinchuan Li, Zhimeng Zhang, Chao Wu

Abstract

In federated learning (FL), clients may have diverse objectives, merging all clients' knowledge into one global model will cause negative transfers to local performance. Thus, clustered FL is proposed to group similar clients into clusters and maintain several global models. Nevertheless, current clustered FL algorithms require the assumption of the number of clusters, they are not effective enough to explore the latent relationships among clients. However, we take advantage of peer-to-peer (P2P) FL, where clients communicate with neighbors without a central server and propose an algorithm that enables clients to form an effective communication topology in a decentralized manner without assuming the number of clusters. Additionally, the P2P setting will release the concerns caused by the central server in centralized FL, such as reliability and communication bandwidth problems. In our method, 1) we present two novel metrics for measuring client similarity, applicable under P2P protocols; 2) we devise a two-stage algorithm, in the first stage, an efficient method to enable clients to match same-cluster neighbors with high confidence is proposed; 3) then in the second stage, a heuristic method based on Expectation Maximization under the Gaussian Mixture Model assumption of similarities is used for clients to discover more neighbors with similar objectives. We make a theoretical analysis of how our work is superior to the P2P FL counterpart and extensive experiments show that our method outperforms all P2P FL baselines and has comparable or even superior performance to centralized cluster FL. Moreover, results show that our method is much effective in mining latent cluster relationships under various heterogeneity without assuming the number of clusters and it is effective even under low communication budgets.

Abstract (translated)

URL

https://arxiv.org/abs/2203.12285

PDF

https://arxiv.org/pdf/2203.12285.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot