Paper Reading AI Learner

The Challenges of Continuous Self-Supervised Learning

2022-03-23 20:05:06
Senthil Purushwalkam, Pedro Morgado, Abhinav Gupta

Abstract

Self-supervised learning (SSL) aims to eliminate one of the major bottlenecks in representation learning - the need for human annotations. As a result, SSL holds the promise to learn representations from data in-the-wild, i.e., without the need for finite and static datasets. Instead, true SSL algorithms should be able to exploit the continuous stream of data being generated on the internet or by agents exploring their environments. But do traditional self-supervised learning approaches work in this setup? In this work, we investigate this question by conducting experiments on the continuous self-supervised learning problem. While learning in the wild, we expect to see a continuous (infinite) non-IID data stream that follows a non-stationary distribution of visual concepts. The goal is to learn a representation that can be robust, adaptive yet not forgetful of concepts seen in the past. We show that a direct application of current methods to such continuous setup is 1) inefficient both computationally and in the amount of data required, 2) leads to inferior representations due to temporal correlations (non-IID data) in some sources of streaming data and 3) exhibits signs of catastrophic forgetting when trained on sources with non-stationary data distributions. We propose the use of replay buffers as an approach to alleviate the issues of inefficiency and temporal correlations. We further propose a novel method to enhance the replay buffer by maintaining the least redundant samples. Minimum redundancy (MinRed) buffers allow us to learn effective representations even in the most challenging streaming scenarios composed of sequential visual data obtained from a single embodied agent, and alleviates the problem of catastrophic forgetting when learning from data with non-stationary semantic distributions.

Abstract (translated)

URL

https://arxiv.org/abs/2203.12710

PDF

https://arxiv.org/pdf/2203.12710.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot