Paper Reading AI Learner

DeLoRes: Decorrelating Latent Spaces for Low-Resource Audio Representation Learning

2022-03-25 12:59:55
Sreyan Ghosh, Ashish Seth, S Umesh

Abstract

Inspired by the recent progress in self-supervised learning for computer vision, in this paper, through the DeLoRes learning framework, we introduce two new general-purpose audio representation learning approaches, the DeLoRes-S and DeLoRes-M. Our main objective is to make our network learn representations in a resource-constrained setting (both data and compute), that can generalize well across a diverse set of downstream tasks. Inspired from the Barlow Twins objective function, we propose to learn embeddings that are invariant to distortions of an input audio sample, while making sure that they contain non-redundant information about the sample. To achieve this, we measure the cross-correlation matrix between the outputs of two identical networks fed with distorted versions of an audio segment sampled from an audio file and make it as close to the identity matrix as possible. We call this the DeLoRes learning framework, which we employ in different fashions with the DeLoRes-S and DeLoRes-M. We use a combination of a small subset of the large-scale AudioSet dataset and FSD50K for self-supervised learning and are able to learn with less than half the parameters compared to state-of-the-art algorithms. For evaluation, we transfer these learned representations to 11 downstream classification tasks, including speech, music, and animal sounds, and achieve state-of-the-art results on 7 out of 11 tasks on linear evaluation with DeLoRes-M and show competitive results with DeLoRes-S, even when pre-trained using only a fraction of the total data when compared to prior art. Our transfer learning evaluation setup also shows extremely competitive results for both DeLoRes-S and DeLoRes-M, with DeLoRes-M achieving state-of-the-art in 4 tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2203.13628

PDF

https://arxiv.org/pdf/2203.13628.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot