Paper Reading AI Learner

WaveFuzz: A Clean-Label Poisoning Attack to Protect Your Voice

2022-03-25 08:14:37
Yunjie Ge, Qian Wang, Jingfeng Zhang, Juntao Zhou, Yunzhu Zhang, Chao Shen

Abstract

People are not always receptive to their voice data being collected and misused. Training the audio intelligence systems needs these data to build useful features, but the cost for getting permissions or purchasing data is very high, which inevitably encourages hackers to collect these voice data without people's awareness. To discourage the hackers from proactively collecting people's voice data, we are the first to propose a clean-label poisoning attack, called WaveFuzz, which can prevent intelligence audio models from building useful features from protected (poisoned) voice data but still preserve the semantic information to the humans. Specifically, WaveFuzz perturbs the voice data to cause Mel Frequency Cepstral Coefficients (MFCC) (typical representations of audio signals) to generate the poisoned frequency features. These poisoned features are then fed to audio prediction models, which degrades the performance of audio intelligence systems. Empirically, we show the efficacy of WaveFuzz by attacking two representative types of intelligent audio systems, i.e., speaker recognition system (SR) and speech command recognition system (SCR). For example, the accuracies of models are declined by $19.78\%$ when only $10\%$ of the poisoned voice data is to fine-tune models, and the accuracies of models declined by $6.07\%$ when only $10\%$ of the training voice data is poisoned. Consequently, WaveFuzz is an effective technique that enables people to fight back to protect their own voice data, which sheds new light on ameliorating privacy issues.

Abstract (translated)

URL

https://arxiv.org/abs/2203.13497

PDF

https://arxiv.org/pdf/2203.13497.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot