Paper Reading AI Learner

Flexible development and evaluation of machine-learning-supported optimal control and estimation methods via HILO-MPC

2022-03-25 14:24:21
Johannes Pohlodek, Bruno Morabito. Christian Schlauch, Pablo Zometa, Rolf Findeisen

Abstract

Model-based optimization approaches for monitoring and control, such as model predictive control and optimal state and parameter estimation, have been used for decades in many engineering applications. Models describing the dynamics, constraints, and desired performance criteria are fundamental to model-based approaches. Thanks to recent technological advancements in digitalization, machine learning methods such as deep learning, and computing power, there has been an increasing interest in using machine learning methods alongside model-based approaches for control and estimation. The number of new methods and theoretical findings using machine learning for model-based control and optimization is increasing rapidly. This paper outlines the basic ideas and principles behind an easy-to-use Python toolbox that allows to quickly and efficiently solve machine-learning-supported optimization, model predictive control, and estimation problems. The toolbox leverages state-of-the-art machine learning libraries to train components used to define the problem. It allows to efficiently solve the resulting optimization problems. Machine learning can be used for a broad spectrum of tasks, ranging from model predictive control for stabilization, setpoint tracking, path following, and trajectory tracking to moving horizon estimation and Kalman filtering. For linear systems, it enables quick code generation for embedded MPC applications. HILO-MPC is flexible and adaptable, making it especially suitable for research and fundamental development tasks. Due to its simplicity and numerous already implemented examples, it is also a powerful teaching tool. The usability is underlined, presenting a series of application examples.

Abstract (translated)

URL

https://arxiv.org/abs/2203.13671

PDF

https://arxiv.org/pdf/2203.13671.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot