Paper Reading AI Learner

Generalization in Automated Process Discovery: A Framework based on Event Log Patterns

2022-03-26 13:49:11
Daniel Reißner, Abel Armas-Cervantes, Marcello La Rosa

Abstract

The importance of quality measures in process mining has increased. One of the key quality aspects, generalization, is concerned with measuring the degree of overfitting of a process model w.r.t. an event log, since the recorded behavior is just an example of the true behavior of the underlying business process. Existing generalization measures exhibit several shortcomings that severely hinder their applicability in practice. For example, they assume the event log fully fits the discovered process model, and cannot deal with large real-life event logs and complex process models. More significantly, current measures neglect generalizations for clear patterns that demand a certain construct in the model. For example, a repeating sequence in an event log should be generalized with a loop structure in the model. We address these shortcomings by proposing a framework of measures that generalize a set of patterns discovered from an event log with representative traces and check the corresponding control-flow structures in the process model via their trace alignment. We instantiate the framework with a generalization measure that uses tandem repeats to identify repetitive patterns that are compared to the loop structures and a concurrency oracle to identify concurrent patterns that are compared to the parallel structures of the process model. In an extensive qualitative and quantitative evaluation using 74 log-model pairs using against two baseline generalization measures, we show that the proposed generalization measure consistently ranks process models that fulfil the observed patterns with generalizing control-flow structures higher than those which do not, while the baseline measures disregard those patterns. Further, we show that our measure can be efficiently computed for datasets two orders of magnitude larger than the largest dataset the baseline generalization measures can handle.

Abstract (translated)

URL

https://arxiv.org/abs/2203.14079

PDF

https://arxiv.org/pdf/2203.14079.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot