Paper Reading AI Learner

WSEBP: A Novel Width-depth Synchronous Extension-based Basis Pursuit Algorithm for Multi-Layer Convolutional Sparse Coding

2022-03-28 15:53:52
Haitong Tang, Shuang He, Lingbing Bian, Zhiming Cui, Nizhuan Wang

Abstract

The pursuit algorithms integrated in multi-layer convolutional sparse coding (ML-CSC) can interpret the convolutional neural networks (CNNs). However, many current state-of-art (SOTA) pursuit algorithms require multiple iterations to optimize the solution of ML-CSC, which limits their applications to deeper CNNs due to high computational cost and large number of resources for getting very tiny gain of performance. In this study, we focus on the 0th iteration in pursuit algorithm by introducing an effective initialization strategy for each layer, by which the solution for ML-CSC can be improved. Specifically, we first propose a novel width-depth synchronous extension-based basis pursuit (WSEBP) algorithm which solves the ML-CSC problem without the limitation of the number of iterations compared to the SOTA algorithms and maximizes the performance by an effective initialization in each layer. Then, we propose a simple and unified ML-CSC-based classification network (ML-CSC-Net) which consists of an ML-CSC-based feature encoder and a fully-connected layer to validate the performance of WSEBP on image classification task. The experimental results show that our proposed WSEBP outperforms SOTA algorithms in terms of accuracy and consumption resources. In addition, the WSEBP integrated in CNNs can improve the performance of deeper CNNs and make them interpretable. Finally, taking VGG as an example, we propose WSEBP-VGG13 to enhance the performance of VGG13, which achieves competitive results on four public datasets, i.e., 87.79% vs. 86.83% on Cifar-10 dataset, 58.01% vs. 54.60% on Cifar-100 dataset, 91.52% vs. 89.58% on COVID-19 dataset, and 99.88% vs. 99.78% on Crack dataset, respectively. The results show the effectiveness of the proposed WSEBP, the improved performance of ML-CSC with WSEBP, and interpretation of the CNNs or deeper CNNs.

Abstract (translated)

URL

https://arxiv.org/abs/2203.14856

PDF

https://arxiv.org/pdf/2203.14856.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot