Paper Reading AI Learner

An Empirical Study and Comparison of Recent Few-Shot Object Detection Algorithms

2022-03-27 04:11:28
Tianying Liu, Lu Zhang, Yang Wang, Jihong Guan, Yanwei Fu, Shuigeng Zhou

Abstract

The generic object detection (GOD) task has been successfully tackled by recent deep neural networks, trained by an avalanche of annotated training samples from some common classes. However, it is still non-trivial to generalize these object detectors to the novel long-tailed object classes, which has only few labeled training samples. To this end, the Few-Shot Object Detection (FSOD) has been topical recently, as it mimics the humans' ability of learning to learn, and intelligently transfers the learnt generic object knowledge from the common heavy-tailed, to the novel long-tailed object classes. Especially, the research in this emerging field has been flourish in the recent years with various benchmarks, backbones, and methodologies proposed. To review these FSOD works, there are several insightful FSOD survey articles that systematically study and compare them as the groups of fine-tuning/transfer learning, and meta-learning methods. In contrast, we compare these FSOD algorithms from the new perspective and taxonomy of their contributions, i.e., data-oriented, model-oriented, and algorithm oriented ones. Thus, an empirical study and comparison has been conducted on the recent achievements of FSOD. Furthermore, we also analyze the technical challenges, the merits and demerits of these methods, and envision the future directions of FSOD. Specifically, we give an overview of FSOD, including the problem definition, common datasets, and evaluation protocols. A new taxonomy is then proposed based on the role of prior knowledge during object detection of novel classes. Following this taxonomy, we provide a systematic review of the advances in FSOD. Finally, further discussions on performance, challenges, and future directions are presented.

Abstract (translated)

URL

https://arxiv.org/abs/2203.14205

PDF

https://arxiv.org/pdf/2203.14205.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot