Paper Reading AI Learner

Evolving Multi-Label Fuzzy Classifier

2022-03-29 08:01:03
Edwin Lughofer

Abstract

Multi-label classification has attracted much attention in the machine learning community to address the problem of assigning single samples to more than one class at the same time. We propose an evolving multi-label fuzzy classifier (EFC-ML) which is able to self-adapt and self-evolve its structure with new incoming multi-label samples in an incremental, single-pass manner. It is based on a multi-output Takagi-Sugeno type architecture, where for each class a separate consequent hyper-plane is defined. The learning procedure embeds a locally weighted incremental correlation-based algorithm combined with (conventional) recursive fuzzily weighted least squares and Lasso-based regularization. The correlation-based part ensures that the interrelations between class labels, a specific well-known property in multi-label classification for improved performance, are preserved properly; the Lasso-based regularization reduces the curse of dimensionality effects in the case of a higher number of inputs. Antecedent learning is achieved by product-space clustering and conducted for all class labels together, which yields a single rule base, allowing a compact knowledge view. Furthermore, our approach comes with an online active learning (AL) strategy for updating the classifier on just a number of selected samples, which in turn makes the approach applicable for scarcely labelled streams in applications, where the annotation effort is typically expensive. Our approach was evaluated on several data sets from the MULAN repository and showed significantly improved classification accuracy compared to (evolving) one-versus-rest or classifier chaining concepts. A significant result was that, due to the online AL method, a 90\% reduction in the number of samples used for classifier updates had little effect on the accumulated accuracy trend lines compared to a full update in most data set cases.

Abstract (translated)

URL

https://arxiv.org/abs/2203.15318

PDF

https://arxiv.org/pdf/2203.15318.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot