Paper Reading AI Learner

Auditing Privacy Defenses in Federated Learning via Generative Gradient Leakage

2022-03-29 15:59:59
Zhuohang Li, Jiaxin Zhang, Luyang Liu, Jian Liu

Abstract

Federated Learning (FL) framework brings privacy benefits to distributed learning systems by allowing multiple clients to participate in a learning task under the coordination of a central server without exchanging their private data. However, recent studies have revealed that private information can still be leaked through shared gradient information. To further protect user's privacy, several defense mechanisms have been proposed to prevent privacy leakage via gradient information degradation methods, such as using additive noise or gradient compression before sharing it with the server. In this work, we validate that the private training data can still be leaked under certain defense settings with a new type of leakage, i.e., Generative Gradient Leakage (GGL). Unlike existing methods that only rely on gradient information to reconstruct data, our method leverages the latent space of generative adversarial networks (GAN) learned from public image datasets as a prior to compensate for the informational loss during gradient degradation. To address the nonlinearity caused by the gradient operator and the GAN model, we explore various gradient-free optimization methods (e.g., evolution strategies and Bayesian optimization) and empirically show their superiority in reconstructing high-quality images from gradients compared to gradient-based optimizers. We hope the proposed method can serve as a tool for empirically measuring the amount of privacy leakage to facilitate the design of more robust defense mechanisms.

Abstract (translated)

URL

https://arxiv.org/abs/2203.15696

PDF

https://arxiv.org/pdf/2203.15696.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot