Paper Reading AI Learner

Subspace-based Representation and Learning for Phonotactic Spoken Language Recognition

2022-03-28 07:01:45
Hung-Shin Lee, Yu Tsao, Shyh-Kang Jeng, Hsin-Min Wang

Abstract

Phonotactic constraints can be employed to distinguish languages by representing a speech utterance as a multinomial distribution or phone events. In the present study, we propose a new learning mechanism based on subspace-based representation, which can extract concealed phonotactic structures from utterances, for language verification and dialect/accent identification. The framework mainly involves two successive parts. The first part involves subspace construction. Specifically, it decodes each utterance into a sequence of vectors filled with phone-posteriors and transforms the vector sequence into a linear orthogonal subspace based on low-rank matrix factorization or dynamic linear modeling. The second part involves subspace learning based on kernel machines, such as support vector machines and the newly developed subspace-based neural networks (SNNs). The input layer of SNNs is specifically designed for the sample represented by subspaces. The topology ensures that the same output can be derived from identical subspaces by modifying the conventional feed-forward pass to fit the mathematical definition of subspace similarity. Evaluated on the "General LR" test of NIST LRE 2007, the proposed method achieved up to 52%, 46%, 56%, and 27% relative reductions in equal error rates over the sequence-based PPR-LM, PPR-VSM, and PPR-IVEC methods and the lattice-based PPR-LM method, respectively. Furthermore, on the dialect/accent identification task of NIST LRE 2009, the SNN-based system performed better than the aforementioned four baseline methods.

Abstract (translated)

URL

https://arxiv.org/abs/2203.15576

PDF

https://arxiv.org/pdf/2203.15576.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot