Paper Reading AI Learner

Interactive Multi-scale Fusion of 2D and 3D Features for Multi-object Tracking

2022-03-30 13:00:27
Guangming Wang, Chensheng Peng, Jinpeng Zhang, Hesheng Wang

Abstract

Multiple object tracking (MOT) is a significant task in achieving autonomous driving. Traditional works attempt to complete this task, either based on point clouds (PC) collected by LiDAR, or based on images captured from cameras. However, relying on one single sensor is not robust enough, because it might fail during the tracking process. On the other hand, feature fusion from multiple modalities contributes to the improvement of accuracy. As a result, new techniques based on different sensors integrating features from multiple modalities are being developed. Texture information from RGB cameras and 3D structure information from Lidar have respective advantages under different circumstances. However, it's not easy to achieve effective feature fusion because of completely distinct information modalities. Previous fusion methods usually fuse the top-level features after the backbones extract the features from different modalities. In this paper, we first introduce PointNet++ to obtain multi-scale deep representations of point cloud to make it adaptive to our proposed Interactive Feature Fusion between multi-scale features of images and point clouds. Specifically, through multi-scale interactive query and fusion between pixel-level and point-level features, our method, can obtain more distinguishing features to improve the performance of multiple object tracking. Besides, we explore the effectiveness of pre-training on each single modality and fine-tuning on the fusion-based model. The experimental results demonstrate that our method can achieve good performance on the KITTI benchmark and outperform other approaches without using multi-scale feature fusion. Moreover, the ablation studies indicates the effectiveness of multi-scale feature fusion and pre-training on single modality.

Abstract (translated)

URL

https://arxiv.org/abs/2203.16268

PDF

https://arxiv.org/pdf/2203.16268.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot