Paper Reading AI Learner

EgoReID: Person re-identification in Egocentric Videos Acquired by Mobile Devices with First-Person Point-of-View

2018-12-22 17:32:36
Emrah Basaran, Yonatan Tariku Tesfaye, Mubarak Shah

Abstract

Widespread use of wearable cameras and recording devices such as cellphones have opened the door to a lot of interesting research in first-person Point-of-view (POV) videos (egocentric videos). In recent years, we have seen the performance of video-based person Re-Identification (ReID) methods improve considerably. However, with the influx of varying video domains, such as egocentric videos, it has become apparent that there are still many open challenges to be faced. These challenges are a result of factors such as poor video quality due to ego-motion, blurriness, severe changes in lighting conditions and perspective distortions. To facilitate the research towards conquering these challenges, this paper contributes a new, first-of-its-kind dataset called EgoReID. The dataset is captured using 3 mobile cellphones with non-overlapping field-of-view. It contains 900 IDs and around 10,200 tracks with a total of 176,000 detections. Moreover, for each video we also provide 12-sensor meta data. Directly applying current approaches to our dataset results in poor performance. Considering the unique nature of our dataset, we propose a new framework which takes advantage of both visual and sensor meta data to successfully perform Person ReID. In this paper, we propose to adopt human body region parsing to extract local features from different body regions and then employ 3D convolution to better encode temporal information of each sequence of body parts. In addition, we also employ sensor meta data to determine target's next camera and their estimated time of arrival, such that the search is only performed among tracks present in the predicted next camera around the estimated time. This considerably improves our ReID performance as it significantly reduces our search space.

Abstract (translated)

URL

https://arxiv.org/abs/1812.09570

PDF

https://arxiv.org/pdf/1812.09570.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot