Paper Reading AI Learner

A Computational Architecture for Machine Consciousness and Artificial Superintelligence: Updating Working Memory Iteratively

2022-03-29 22:28:30
Jared Edward Reser

Abstract

This theoretical article examines how to construct human-like working memory and thought processes within a computer. There should be two working memory stores, one analogous to sustained firing in association cortex, and one analogous to synaptic potentiation in the cerebral cortex. These stores must be constantly updated with new representations that arise from either environmental stimulation or internal processing. They should be updated continuously, and in an iterative fashion, meaning that, in the next state, some items in the set of coactive items should always be retained. Thus, the set of concepts coactive in working memory will evolve gradually and incrementally over time. This makes each state is a revised iteration of the preceding state and causes successive states to overlap and blend with respect to the set of representations they contain. As new representations are added and old ones are subtracted, some remain active for several seconds over the course of these changes. This persistent activity, similar to that used in artificial recurrent neural networks, is used to spread activation energy throughout the global workspace to search for the next associative update. The result is a chain of associatively linked intermediate states that are capable of advancing toward a solution or goal. Iterative updating is conceptualized here as an information processing strategy, a computational and neurophysiological determinant of the stream of thought, and an algorithm for designing and programming artificial intelligence.

Abstract (translated)

URL

https://arxiv.org/abs/2203.17255

PDF

https://arxiv.org/pdf/2203.17255.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot