Paper Reading AI Learner

Paying More Attention to Self-attention: Improving Pre-trained Language Models via Attention Guiding

2022-04-06 16:22:02
Shanshan Wang, Zhumin Chen, Zhaochun Ren, Huasheng Liang, Qiang Yan, Pengjie Ren

Abstract

Pre-trained language models (PLM) have demonstrated their effectiveness for a broad range of information retrieval and natural language processing tasks. As the core part of PLM, multi-head self-attention is appealing for its ability to jointly attend to information from different positions. However, researchers have found that PLM always exhibits fixed attention patterns regardless of the input (e.g., excessively paying attention to [CLS] or [SEP]), which we argue might neglect important information in the other positions. In this work, we propose a simple yet effective attention guiding mechanism to improve the performance of PLM by encouraging attention towards the established goals. Specifically, we propose two kinds of attention guiding methods, i.e., map discrimination guiding (MDG) and attention pattern decorrelation guiding (PDG). The former definitely encourages the diversity among multiple self-attention heads to jointly attend to information from different representation subspaces, while the latter encourages self-attention to attend to as many different positions of the input as possible. We conduct experiments with multiple general pre-trained models (i.e., BERT, ALBERT, and Roberta) and domain-specific pre-trained models (i.e., BioBERT, ClinicalBERT, BlueBert, and SciBERT) on three benchmark datasets (i.e., MultiNLI, MedNLI, and Cross-genre-IR). Extensive experimental results demonstrate that our proposed MDG and PDG bring stable performance improvements on all datasets with high efficiency and low cost.

Abstract (translated)

URL

https://arxiv.org/abs/2204.02922

PDF

https://arxiv.org/pdf/2204.02922.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot