Paper Reading AI Learner

Learning to Solve Travelling Salesman Problem with Hardness-adaptive Curriculum

2022-04-07 05:59:05
Zeyang Zhang, Ziwei Zhang, Xin Wang, Wenwu Zhu

Abstract

Various neural network models have been proposed to tackle combinatorial optimization problems such as the travelling salesman problem (TSP). Existing learning-based TSP methods adopt a simple setting that the training and testing data are independent and identically distributed. However, the existing literature fails to solve TSP instances when training and testing data have different distributions. Concretely, we find that different training and testing distribution will result in more difficult TSP instances, i.e., the solution obtained by the model has a large gap from the optimal solution. To tackle this problem, in this work, we study learning-based TSP methods when training and testing data have different distributions using adaptive-hardness, i.e., how difficult a TSP instance can be for a solver. This problem is challenging because it is non-trivial to (1) define hardness measurement quantitatively; (2) efficiently and continuously generate sufficiently hard TSP instances upon model training; (3) fully utilize instances with different levels of hardness to learn a more powerful TSP solver. To solve these challenges, we first propose a principled hardness measurement to quantify the hardness of TSP instances. Then, we propose a hardness-adaptive generator to generate instances with different hardness. We further propose a curriculum learner fully utilizing these instances to train the TSP solver. Experiments show that our hardness-adaptive generator can generate instances ten times harder than the existing methods, and our proposed method achieves significant improvement over state-of-the-art models in terms of the optimality gap.

Abstract (translated)

URL

https://arxiv.org/abs/2204.03236

PDF

https://arxiv.org/pdf/2204.03236.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot