Paper Reading AI Learner

Visualizing Deep Neural Networks with Topographic Activation Maps

2022-04-07 15:56:44
Andreas Krug, Raihan Kabir Ratul, Sebastian Stober

Abstract

Machine Learning with Deep Neural Networks (DNNs) has become a successful tool in solving tasks across various fields of application. The success of DNNs is strongly connected to their high complexity in terms of the number of network layers or of neurons in each layer, which severely complicates to understand how DNNs solve their learned task. To improve the explainability of DNNs, we adapt methods from neuroscience because this field has a rich experience in analyzing complex and opaque systems. In this work, we draw inspiration from how neuroscience uses topographic maps to visualize the activity of the brain when it performs certain tasks. Transferring this approach to DNNs can help to visualize and understand their internal processes more intuitively, too. However, the inner structures of brains and DNNs differ substantially. Therefore, to be able to visualize activations of neurons in DNNs as topographic maps, we research techniques to layout the neurons in a two-dimensional space in which neurons of similar activity are in the vicinity of each other. In this work, we introduce and compare different methods to obtain a topographic layout of the neurons in a network layer. Moreover, we demonstrate how to use the resulting topographic activation maps to identify errors or encoded biases in DNNs or data sets. Our novel visualization technique improves the transparency of DNN-based algorithmic decision-making systems and is accessible to a broad audience because topographic maps are intuitive to interpret without expert-knowledge in Machine Learning.

Abstract (translated)

URL

https://arxiv.org/abs/2204.03528

PDF

https://arxiv.org/pdf/2204.03528.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot