Paper Reading AI Learner

Labeling-Free Comparison Testing of Deep Learning Models

2022-04-08 10:55:45
Yuejun Guo, Qiang Hu, Maxime Cordy, Xiaofei Xie, Mike Papadakis, Yves Le Traon

Abstract

Various deep neural networks (DNNs) are developed and reported for their tremendous success in multiple domains. Given a specific task, developers can collect massive DNNs from public sources for efficient reusing and avoid redundant work from scratch. However, testing the performance (e.g., accuracy and robustness) of multiple DNNs and giving a reasonable recommendation that which model should be used is challenging regarding the scarcity of labeled data and demand of domain expertise. Existing testing approaches are mainly selection-based where after sampling, a few of the test data are labeled to discriminate DNNs. Therefore, due to the randomness of sampling, the performance ranking is not deterministic. In this paper, we propose a labeling-free comparison testing approach to overcome the limitations of labeling effort and sampling randomness. The main idea is to learn a Bayesian model to infer the models' specialty only based on predicted labels. To evaluate the effectiveness of our approach, we undertook exhaustive experiments on 9 benchmark datasets spanning in the domains of image, text, and source code, and 165 DNNs. In addition to accuracy, we consider the robustness against synthetic and natural distribution shifts. The experimental results demonstrate that the performance of existing approaches degrades under distribution shifts. Our approach outperforms the baseline methods by up to 0.74 and 0.53 on Spearman's correlation and Kendall's $\tau$, respectively, regardless of the dataset and distribution shift. Additionally, we investigated the impact of model quality (accuracy and robustness) and diversity (standard deviation of the quality) on the testing effectiveness and observe that there is a higher chance of a good result when the quality is over 50\% and the diversity is larger than 18\%.

Abstract (translated)

URL

https://arxiv.org/abs/2204.03994

PDF

https://arxiv.org/pdf/2204.03994.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot