Paper Reading AI Learner

Enhancing the Robustness, Efficiency, and Diversity of Differentiable Architecture Search

2022-04-10 13:25:36
Chao Li, Jia Ning, Han Hu, Kun He

Abstract

Differentiable architecture search (DARTS) has attracted much attention due to its simplicity and significant improvement in efficiency. However, the excessive accumulation of the skip connection makes it suffer from long-term weak stability and low robustness. Many works attempt to restrict the accumulation of skip connections by indicators or manual design, however, these methods are susceptible to thresholds and human priors. In this work, we suggest a more subtle and direct approach that removes skip connections from the operation space. Then, by introducing an adaptive channel allocation strategy, we redesign the DARTS framework to automatically refill the skip connections in the evaluation stage, resolving the performance degradation caused by the absence of skip connections. Our method, dubbed Adaptive-Channel-Allocation-DARTS (ACA-DRATS), could eliminate the inconsistency in operation strength and significantly expand the architecture diversity. We continue to explore smaller search space under our framework, and offer a direct search on the entire ImageNet dataset. Experiments show that ACA-DRATS improves the search stability and significantly speeds up DARTS by more than ten times while yielding higher accuracy.

Abstract (translated)

URL

https://arxiv.org/abs/2204.04681

PDF

https://arxiv.org/pdf/2204.04681.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot