Paper Reading AI Learner

STFT-Domain Neural Speech Enhancement with Very Low Algorithmic Latency

2022-04-21 06:40:37
Zhong-Qiu Wang, Gordon Wichern, Shinji Watanabe, Jonathan Le Roux

Abstract

Deep learning based speech enhancement in the short-term Fourier transform (STFT) domain typically uses a large window length such as 32 ms. A larger window contains more samples and the frequency resolution can be higher for potentially better enhancement. This however incurs an algorithmic latency of 32 ms in an online setup, because the overlap-add algorithm used in the inverse STFT (iSTFT) is also performed based on the same 32 ms window size. To reduce this inherent latency, we adapt a conventional dual window size approach, where a regular input window size is used for STFT but a shorter output window is used for the overlap-add in the iSTFT, for STFT-domain deep learning based frame-online speech enhancement. Based on this STFT and iSTFT configuration, we employ single- or multi-microphone complex spectral mapping for frame-online enhancement, where a deep neural network (DNN) is trained to predict the real and imaginary (RI) components of target speech from the mixture RI components. In addition, we use the RI components predicted by the DNN to conduct frame-online beamforming, the results of which are then used as extra features for a second DNN to perform frame-online post-filtering. The frequency-domain beamforming in between the two DNNs can be easily integrated with complex spectral mapping and is designed to not incur any algorithmic latency. Additionally, we propose a future-frame prediction technique to further reduce the algorithmic latency. Evaluation results on a noisy-reverberant speech enhancement task demonstrate the effectiveness of the proposed algorithms. Compared with Conv-TasNet, our STFT-domain system can achieve better enhancement performance for a comparable amount of computation, or comparable performance with less computation, maintaining strong performance at an algorithmic latency as low as 2 ms.

Abstract (translated)

URL

https://arxiv.org/abs/2204.09911

PDF

https://arxiv.org/pdf/2204.09911.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot