Paper Reading AI Learner

Piecewise-Linear Activations or Analytic Activation Functions: Which Produce More Expressive Neural Networks?

2022-04-24 09:53:39
Anastasis Kratsios, Behnoosh Zamanlooy

Abstract

Many currently available universal approximation theorems affirm that deep feedforward networks defined using any suitable activation function can approximate any integrable function locally in $L^1$-norm. Though different approximation rates are available for deep neural networks defined using other classes of activation functions, there is little explanation for the empirically confirmed advantage that ReLU networks exhibit over their classical (e.g. sigmoidal) counterparts. Our main result demonstrates that deep networks with piecewise linear activation (e.g. ReLU or PReLU) are fundamentally more expressive than deep feedforward networks with analytic (e.g. sigmoid, Swish, GeLU, or Softplus). More specifically, we construct a strict refinement of the topology on the space $L^1_{\operatorname{loc}}(\mathbb{R}^d,\mathbb{R}^D)$ of locally Lebesgue-integrable functions, in which the set of deep ReLU networks with (bilinear) pooling $\operatorname{NN}^{\operatorname{ReLU} + \operatorname{Pool}}$ is dense (i.e. universal) but the set of deep feedforward networks defined using any combination of analytic activation functions with (or without) pooling layers $\operatorname{NN}^{\omega+\operatorname{Pool}}$ is not dense (i.e. not universal). Our main result is further explained by \textit{quantitatively} demonstrating that this "separation phenomenon" between the networks in $\operatorname{NN}^{\operatorname{ReLU}+\operatorname{Pool}}$ and those in $\operatorname{NN}^{\omega+\operatorname{Pool}}$ by showing that the networks in $\operatorname{NN}^{\operatorname{ReLU}}$ are capable of approximate any compactly supported Lipschitz function while \textit{simultaneously} approximating its essential support; whereas, the networks in $\operatorname{NN}^{\omega+\operatorname{pool}}$ cannot.

Abstract (translated)

URL

https://arxiv.org/abs/2204.11231

PDF

https://arxiv.org/pdf/2204.11231.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot